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Progressive Precision Surface Design 
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Figure 1: Precision surface design operations are made practical by our progressive wavelet decomposition. From left: pasting a 
template with free-form placement, precision sculpting with path and tool shape, smoothing and roughening within a roped-off area. 

Abstract 

We introduce a novel wavelet decomposition algorithm that makes 
a number of powerful new surface design operations practical. 
Wavelets, and hierarchical representations generally, have held 
promise to facilitate a variety of design tasks in a unified way by 
approximating results very precisely, thus avoiding a proliferation 
of undergirding mathematical representations. However, traditional 
wavelet decomposition is defined from fine to coarse resolution, 
thus limiting its efficiency for highly precise surface manipulation 
when attempting to create new non-local editing methods. 

Our key contribution is the progressive wavelet decomposition 
algorithm, a general-purpose coarse-to-fine method for hierarchical 
fitting, based in this paper on an underlying multiresolution repre- 
sentation called dyadic splines. The algorithm requests input via a 
generic interval query mechanism, allowing a wide variety of non- 
local operations to be quickly implemented. The algorithm per- 
forms work proportionate to the tiny compressed output size, rather 
than to some arbitrarily high resolution that would otherwise be 
required, thus increasing performance by several orders of magni- 
tude. 

We describe several design operations that are made tractable 
because of the progressive decomposition. Free-fonn pasting is a 
generalization of the traditional control-mesh edit, but for which the 
shape of the change is completely general and where the shape can 
be placed using a free-form deformation within the surface domain. 
Smoothing and roughening operations are enhanced so that an ar- 
bitrary loop in the domain specifies the area of effect. Finally, the 
sculpting effect of moving a tool shape along a path is simulated. 

CR Categories: G. 1.2 mumerical Analysis]: Approximation- 
Spline and piecewise polynomial approximation; Wavelets and 
fractals; F.2.1 [Analysis of Algorithms and Problem Complexity]: 
Numerical Algorithms and Problems-Computation of transforms; 

E.4 [Coding and Information Theory]: Data compaction and com- 
pression; 1.3.5 [Computer Graphics]: Computational Geometry and 
Object ModelingXurve, surface, solid, and object representa- 
tions; Geometric algorithms, languages, and systems; Hierarchy 
and geometric transformations; Splines; J.6 [Computer-Aided En- 
gineering]: Computer-aided design (CAD) 
Keywords: surface editing,wavelets,progressive computation 

1 Introduction 

The process of designing geometric shapes via computation is a 
critical activity for the making of films, computer games, automo- 
biles and many other ends. Underpinning this design activity are 
mathematical representations and associated algorithms that facil- 
itate a wide variety of manipulations of shape, such as creating 
overall proportions, placing details, then deforming the shape or 
otherwise modeling various quasi-physical manipulations. Unfor- 
tunately, no single mathematical representation is known that will 
provide exact analytic results to all surface operations of interest. 
Rather than introduce more and more specialized mathematics, a 
recent trend has been to support many operations in a single, uni- 
fied representation using approximation theory and hierarchical al- 
gorithms DRose  et al. 1998; Lee et al. 2000; Guskov et al. 2000, 
Cirak et al. 2002; Perry and Frisken 20011. However, so far only 
local operations have been generally supported in an efficient way 
for surface editing lLounsbery 1994; Zorin et al. 19971. In this pa- 
per, we introduce the first multiresolution framework that allows 
coarse-to-fine (Le. progressive) computation of a broad set of non- 
local shape manipulations. 

The key technique we introduce is the progressive wavelet de- 
composition, whereby the usual fine-to-coarse filtering and trunca- 
tion is replaced by coarse-to-fine selective refinement. This switch 
in orientation is generally not possible unless the input data are rep 
resented and operations are evaluated in a generic hierarchical fa- 
sion, which we term interval queries. The abstract input interface 
to the progressive wavelet decomposition is therefore in the form 
of an interval query oracle, which the transform calls in response 
to selective refinement requests on the operation output. The inter- 
val query mechanism is inspired by the methods of interval analy- 
sis moore 19791, and the research into modeling systems built on 
those concepts [Snyder and Kajiya 1992; Kass 19921. A simple, 
hierarchical parametric representation, dyadic splines [Duchaineau 
19961, is used at the lowest level. A dyadic spline is defined by al- 
ternately performing B-spline refinement and adding displacement 



vectors. The coarse-to-fine processing proceeds in the following 

1. Split a leaf of the domain-interval bintree in two, and put the 
(so far uncomputed) wavelet Coefficients overlapping these in- 
tervals at that scale onto to the active coefficient list. 

2. Invoke the interval-query oracle to the target function, which 
provides a local Bdzier patch estimate and error bound. Do 
this on all the domain intervals that the newly-active wavelet 
coefficients depend on. 

I phases: 
I 

% 

3. In this neighborhood, compute the estimated values and asso- 
ciated error bounds of the scaling function coefficients, dyadic 
spline displacements, and wavelet coefficients using the ap- 
propriate local weighted-average filters. 

4. Propagate improved values up to coarser resolutions if war- 

The split request can be made in any order that an application 
chooses. A good generic ordering of these requests involves placing 
the domain bintree leaves on a priority queue ordered by the size of 
the error bounds in the neighborhood. These phases are repeated 
over and over until a desired accuracy is achieved or a desired time 
limit is reached. 

ranted, using the local wavelet decomposition filters. 

We evaluate our approach with respect to six criteria: 

1. Output-sensitive computation: Our progressive decomposi- 
tion algorithm performs work proportionate to the compressed 
(approximated) output size. This is similar to the best algo- 
rithms in more specialized settings such as view-dependent 
optimization [Hoppe 1997; Duchaineau et al. 19971, multires- 
olution surface editing [Forsey and Bartels 1988; Zorin et al. 
19971, and multiresolution painting [Berman et al. 19941, yet 
provides a kind of generic “plug in” architecture that eases the 
addition of new manipulation operations. 

2. Guaranteed error bounds: The formulation of our trans- 
form not only is guaranteed to converge, but provides strict 
error bounds at every step in the progressive sequence. 

3. Fixed memory footprint: We provide a caching system for 
the interval queries that allows the transform to restrict the 
working memory footprint to a tiny subset of the total data 
accessed, traversed, evaluated or output. 

4. Rate-diirtion curves: Our coarse-to-fine processing pro- 
duces accuracies comparable to traditional fine-to-coarse 
methods at higher refinement, but suffers somewhat at coarser 
resolutions because the selective refinement and local approx- 
imations are based on “fuzzy” knowledge of the underlying 
function. In a sense this is the price that must be paid to get 
progressive computation, but it does not appear affect overall 
convergence rates. 

5. Selective refinement: the algorithm allows applications that 
know where and in what order they want detail in a function 
domain. Interestingly, this includes feeding the output of the 
progressive transform into other interval-query oracles and 
progressive transforms, leading to a closed system for pro- 
gressive computation. 

6. High-level design tools: We devised surface design applica- 
tions that are interesting in their own right but make a large 
point: they show the possibility of quasi-physical operations 
that more closely match the intuition gained from non-digital 
model building, as opposed to the tedium of “pulling on the 

control net” by hand. In a sense this follows in the foot- 
steps of the development of Computational Solid Geometry 
(CSG) mequicha and Voelcker 19821, free-form deformations 
[Sederberg and Parry 19861, and hyperpatch modeling [Joy 
19911. 

2 Dyadic Spline Representation 

This section will give a brief review of the dyadic spline represen- 
tation, giving its formulation and the properties most critical the the 
progressive decomposition algorithm. Complete details are avail- 
able in Duchaineau 19961. 

The general idea is depicted in Figure 2. An initial coarse grid 
of control points is alternately split and perturbed until some l i t  
function is produced. The common uniform B-spline weighted av- 
eraging is used, and the perturbations are simple vector additions. 
The set of functions represented in this way is dense in Lp, meaning 
that all functions of interest in practical situations can be accurately 
converted to a dyadic spline. 

double 

perturb 

double 

perturb 

limit 

Figure 2 A dyadic spline is the limit of a sequence of doubling (B- 
spline refinement) and perturbing (hierarchical displacement) oper- 
ations. A broad class of functions can be stored this way, but more 
importantly this view of a function facilitates a general form of pro- 
gressive evaluation and computation. 

To begin the definitions required, first recall the bintree decom- 
position of an m-cube. Bintrees are based on the dyadic rationals 

A hierarchy of one-dimensional intervals may be indexed by Zevel 
L and position i, as shown in Figure 3 for the subintervals of [0, 1). 
These intervals are defined concisely as 
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Figure 3: The dyadic interval hierarchy. 

For higher dimensions, the hierarchy of one-dimensional intervals 
becomes a hierarchy of two- or three-dimensional intervals by split- 
ting intervals in half along one axis at a time, as shown in Figure 4. 

2-D - 3-D 

Figure 4 Bintree intervals in higher dimensions. 

The intervals now have a level e, current axis a, and m indices 
lI , .  . . , zm: 

- 
't,a,i ,,..., in -'t+1,i1 X*. .x' t+~, i , , -~ X 4 , i .  X . .*X' t , i , , ,  

It is important to keep this hierarchy in mind, since it forms the 
fundamental spatial structure that all the various weighted averag- 
ing schemes make use of. In particular, displucements and range 
positions associated with will be denoted by Df,+ and Pf,i re- 
spectively. 

The B-spline subdivision is given by the weighted-averaging for- 
mula 

where the an,j. and f ln, j  weights are given in Figure 5. A diagram 
of the domain intervals involved is given in Figure 6. 

Figure 5: Dyadic Refinement weights. 

This is extended to include the displacements by the recurrence 

Pt,2i = xjan,jPt?-1,i+j+Df,2i 
Pf,2i+l = xjBn,jPf-I,i+j+Df,2i+l 

Note that in this simple form (without wavelets), the dyadic spline 
is defined by the base control mesh Po and displacements Df for L = 
1, - - - ,=. Of particular importance to the coarse-to-fine progressive 
decomposition is the dependencies (i.e. stencils of support) in the 
subdivision process, shown in the cubic case in Figure 7. 

The 1-D formulation just given is extended to m dimensions by 
the usual tensor-product mechanism, in which the one-dimensional 
filtering is applied along each of the axis, one at a time. The result 
of applying the cubic recurrence for three nonzero displacements is 
shown for a 2-D domain in Figure 8. 

Figure 6 Dyadic Refinement intervals 

///\\ 
Figure 7: Dependencies in the case of cubic subdivision. 

The remainder of the formulation for dyadic splines involves 
specifying linear operators (filters): 

s =  
F =  
c =  compact the displacements 
E =  expand displacements back again 

subdivide to obtain the next finer 
fit points to the next finer 

The subdivision operator S has in effect already been defined, so 
that we can restate the dyadic spline recurrence as 

The subdivision filter, combined with the fit, compaction and ex- 
pansion filters, form the usual wavelet decomposition bank depicted 
in Figure 9. Note that the C operator in effect eliminates the factor 
of two redundancy in the displacement representation of a function. 
In wavelet parlance, the Pf,i values are scalingfunction coe#cients, 
and the compacted displacements Qf,i are wavelet coefiients. 

These three filters are defined as follows. The fit operator a p  
proximates the ideal least-squares fit operator 

R- = (STS)-'S= 

but with finite support. These operators should satisfy the following 

I O  [ : ] = [ 0 I ] 
In other words, the operation of fitting and compacting the differ- 
ences from prediction should be the inverse of the operation of sub- 
dividing and expanding the compacted differences. By setting the 
central (near diagonal) elements of F to F, and leaving an appro- 
priate number as available degrees of freedom, this inverse prop 
erty can be maintained by solving a tiny linear system Dchaineau 
19961. In practice these filters have stencils of support similar to the 
subdivision weight masks shown earlier, and form a kind of wavelet 
decomposition. An alternative derivation of wavelets for computer 
graphics may be obtained in [Stollnitz et al. 19961. 

The filters are applied in various orders depending on the oper- 
ation desired. For traditional wavelet decomposition, one assumes 



Figure 8: A 2-D dyadic spline with three nonzero displacements. 
The interals that end up forming individual polynomial pieces are 
indicated with bold borders. 

P2-' .-Q2 

Ft c V E  
P3 ' , -Q3 

Figure 9: The dyadic spline wavelet filter bank, showing the data 
flow dependencies and scale relationships of the four filters F (fit), 
S (subdivide), C (compact) and E (expand). 

some fine-level Pl is given, and the computation proceeds as 

... 
P3 = FP4 Q3 = CP4 
P2 = FP3 Q2 = CP3 ... 

For synthesis, this is reversed 

... 
P3 = SPz+EQ3 
P4 = SP3+EQ3 ... 

Let us presume that the ideal target function (the result of an 
editing operation, for example), is denoted g(t), and that we have 
available an oracle that will return a local BCzier-curve estimate 
for t E of &(f) = XjGl,i,jBl,i,j(f), where the Gl,i,j are con- 
trol points and Bl,i,j(t) are the Bernstein basis functions of some 
desired polynomial degree parin 19993. In addition to the local 
polynomial, we also need an error estimate El,i such that g( t )  E 
[&#) - El,i ,gl , i(f)  +Elli] for t E ki. We defer the discussion of 
how to form these estimates to the application sections, but gen- 
erally this relies on having input functions in a hierarchical form, 
and on using variants of interval analysis Moore 19791 to create 
the result of the interval query. Note that there is no need to ob- 
serve continuity between gl,;s for our purposes; the later filtering 
process is immune to this and simply works best with accurate es- 
timates, regardless of continuity (in effect because it is performing 
a convolution over these estimates with kernels that do not involve 
delta functions). 

Suppose in a progressive decomposition that we desire to have 
estimates for Pl,i for some intermediate level of resolution I, for 
example at the leaves of the current bintree refinement. Given the 
filters F, C ,  E, and S we can then compute all the positions P,,i, 
displacements D,,i and wavelet coefficients Q,,i for levels I' < I 
(values at or coarser than 9. So our problem is reduced to sim- 
ulating what would happen if we were to perform the wavelet fil- 
tering on the infinitely resolved BCzier curves. Since the filtering 
process, even in this limit, is fundamentally just a linear operation 
of weighted averaging, we can separately precompute the infinite- 
limit wavelet decomposition of the Bernstein basis functions, and at 
runtime s@ply look these results up to directly compute estimated 
positions Pl,i as a weighted average of the nearby estimate control 
points Gl.?. i :  

, I- 

for the precomputed Bernstein-basis limit fits & j .  Note that due 
to scale invariance these weights depend only on relative position 
s and basis function index j ,  not on the level L. The estimate fit 
kernels /3s,j are shown in Figure 10. Note that the nonzero weights 
are in a narrow local neighborhood. 

To convert from the simple dyadic spline representation (base-mesh 
plus displacements) to wavelets, while at the same time keeping a 
consistent and optimized version of the displacements, the follow- 
ing is used 

... 
D3 += FD4 Q3 = CD4 D4 = EQ3 
0 2  += FD3 QZ = CD3 D3 = EQZ ... 

This level of redundancy is useful for the formulation and imple- 
mentation of surface design operations. At the end of the day, only 
the base mesh and wavelet coefficients are stored to disk or sent 
over the network. 

3 Progressive Wavelet Decomposition 

Looking at the wavelet filter bank in Figure 9, the computation of 
the wavelet coefficients would appear to require an order of 
processing working from fine to coarse resolution, which we some- 
how need to reverse. 

Figure 10: Estimate-fit kernels & j  for dyadic splines of degree 
n = 1, ,3 (with respective filter width parameter k = 1,1,2), and 
for Bernstein basis functions for degrees 0,1,2. 

The various positions, displacements and wavelet coefficients, 
',,i, D,,i, and Q, i ,  can now be computed using the wavelet filters. 
It is straightforw&d to obtain strict error bounds on these values 
since error bounds on the inputs are known and the entire process 
is simple linear weighted averaging Moore 19791. 

The wavelet decomposition algorithm proceeds to use this ma- 
chinery to create a progressive sequence of increasingly accurate 
approximations to the target function g(t). A pictorial example is 
shown in Figure 11. The target function in this case is a sequence 



of “bumps within bumps” defined as the sum of transendental 
functions, specifically, translated a dilated versions of the “mother 
bump” { ;m2(54 if t  E (-1,l)  

b(t) = otherwise 
These bump functions have closed forms for their derivatives of var- 
ious degrees, and known monotonic regions, so it is straightforward 
to create local estimates with bounds. 

~ t 

Figure 11: A target function with extremely fine-scale features 
(shown as a sequence of insets) is progressively computed into a 
wavelet decomposition under the max error norm (L). The pro- 
gressive transform selectively refines where errors are not guaran- 
teed to be low, leading to a natural adaptation of the refinement 
around the fine features. In this example, the transform is com- 
puted over a thousand times faster than if a sufEciently fine uniform 
sampling of the target function were used as the starting point. 

The rate-distortion curve for the example is plotted in Fig- 
ure 12 (in black), compared to the usual greedy algorithm that uses 
fine-tocoarse processing to throw away wavelet coefficients that 
comtribute least to the error. Note especially that the accuracies are 
relatively worse for the progressive transform at low numbers of co- 
efficients (due to it’s fuzzy awareness of the target function), yet it 
“catches up” to the quality and convergence rates of the traditional 
greedy algorithm at higher counts. 

The extension to the tensor-product setting is straightforward, as 
all the filtering operations just described can be performed on one 
axis at a time just as with subdivision. Whereas a univariate bintree 
decomposition was indexed by level L and index i, the multi- 
variate bintree requires an additional axis counter a E {1, ... ,m} 
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Figure 12 Coarse to fine progression of our new transform (black) 
is relatively low accuracy compared to the traditional greedy al- 
gorithm at low coefficient counts, yet is nearly identical at higher 
counts. 

and multiple indices i,, . . . , im. To simplify the appearance of the 
multivariate bintree intervals 

will be used, where 2 = (L,a) and i = (il, . . . , im). The composi- 
tion 49 = (L ,  a) will be refered to as a layer, and is analogous to the 
level in the univariate case. Note that the intervals Z9,i still form 
a binary tree. The displacements are now denoted D9,i, and the 
positions P2,i. 

An example progression for a 2-D domain with a few conical 
bumps is shown in Figure 13. Note how the progressive decompo- 
sition naturally adapts to the sharp features of this target function. 

In the remainder of this paper we will exploit the progressive 
wavelet transform to create four new higher-level surface design 
operations. 

4 Smoothing and Roughening within a 

This section will descibe the implementation of signal processing 
operations within a restricted domain area defined by a closed loop 
of Bkzier curves. The first notion is that of performing global 
smoothing, which is defined for smoothing parameter Ls as 

General Loop 

ifL<Ls 
if 1- 1 < L, 5 L 
otherwise (Ls 5 L - 1) 

D2,i = (Ls - ( L -  1))D2,i r 
This is similar to the smoothing defined in pinkelstein and Salesin 
19941, but here extended to higher dimensions via tensor products. 

For local smoothing, a generalization of the smoothing segment 
is needed. For this, a smoothing area is defined using the concept 
of a trim curve [Casale 19871, previously used in the methods for 
trimmed surface patches. A trim curve c(t )  is a continuous, periodic 
mapping from t E [0,1] to the surface domain (u,v) E S2. This 
curve encloses a domain area that will serve as the locality to be 
smoothed. 

The smoothing operation blends between the original displace- 
ments D2,i and the smoothed ones D9,i. The blend factor q is 
defined as the fraction of D9,i’s interval of influence ZD that over- 
laps the area enclosed by c(t).  The computation of this overlap is 
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Figure 14 A formerly rough surface is smoothed within the area 
enclosed by a trim curve. 

Figure 13: A demonstration of the progressive wavelet decomposi- 
tion of a function as a height with 2-D domain, consisting of two 
overlay4 conical protrusions. The wavelet coefficients are built in 
a coarse-to-fine sequence, shown from top to bottom. 

discussed momentarily. The blend factor q is then applied as: 

Some results of local smoothing are shown in Figure 14. 
It is nontrivial to compute the area of overlap of an interval I 

and the area enclosed by a trim curve c(t). However, the well- 
known Wamock algorithm for polygon visibility mamock 19691 
can be adapted to this problem. Although the concern here is only 
for determining the area of a single “polygon” c(t) within a “view 
window” I, the Wamock algorithm has a useful property of divid- 
ing I into smaller intervals until each interval either misses c(t),  
c(t) crosses the interval in a simple way, or the interval is small. 
Winding number computations are used in this algorithm to deter- 
mine which intervals (or which parts of crossed intervals) are in- 
side the trim curve. To apply the polygon techniques to a curve, 
the curve must be approximated by a polygon. For the purposes 
of interactive editing, it is sufficient to ensure that the approxima- 
tion error is within a small fraction of the width of the interval I. 
If c(t) is a dyadic spline, or is in B-spline form, standard subdivi- 
sion techniques can be applied to accomplish this [Farin 19991. In 
the implementation used here, “simple” crossings consist of two or 
fewer polygon edges, and a bintree decomposition of I is used. An 
example Wamock-style decomposition of a trim area is shown in 
Figure 15. 

For roughening, we added random displacements in the manner 
of midpoint-displacement fractals w l l e r  19861. However, the di- 
rection of the displacements is taken to be in the normal direction of 
a smoothed version of the surface, similar to what was done in the 
curve case in [Finkelstein and Salesin 19941. The offset frame for 
a surface displacement D9,i is defined as the two unit tangents and 

Figure 15: Decomposition of the trim-curve domain area using a 
variant of the Wamock algorithm. 

unit normal at the point of maximum influence, taken with respect 
to the smoothed version of the surfjxe. 

Let f (u, v )  be the surface and f (u, v )  be a smoothed version of 
the surface for smoothing parameter e,. Then the offset coordinate 
frame applied to offset displacement b9,i is then defined as 

A9, i  = [P q rl 

where 

r = &  
and (um)Vm) is the domain point of maximum influence. Now the 
application of A9,i to b9,i gives the standard displacement as 

This gives the effect that details track the position and orientation 
of the smooth underlying surface. 



Global roughening is produced by adding random vectors in the 
local smoothed-normal direction to the fine-resolution wavelet co- 
efficients. The localization of the roughening effect is accomplished 
in the same manner as local surface smoothing. An example of lo- 
cal roughening is shown in Figure 16. 

L 

Figure 17: A simple extruded hill shape is offset from the input 
surface in the continuous, smoothed local normal directions. The 
placement of the offset template is specified with an S-shaped bicu- 
bic B6zier patch controlled in the input-surface domain. 

Figure 16 Random fractal offsets are made in the local smoothed 
normal direction. The magnitude of the offset is modulated by the 
Warnock inlout overlap fractions. 

5 Free-form Pasting 

In this section we make a more flexible version of the Pasting oper- 
ation introduced in [Barghiel et al. 19951. The idea is to allow an ar- 
bitrary template shape to be offset from the input surface, where the 
placement of the template is given by a general domain-to-domain 
mapping. This placement strategy is akin to a free-form deforma- 
tion [Sederberg and Parry 19861 in the 2-D case. We similarly 
choose a bicubic Btzier patch to formulate the 2-D to 2-D map 
ping. The advantage of the earlier pasting formulations is that we 
have somewhat more general template placement and shape con- 
trol, but most importantly our results are computed in progressive 
order to any accuracy for the precise, continuous offset definition. 

Let the input surface be f (u , v ) .  Let g(s , t )  be a scalar-valued 
template function and let h(s,t) be an invertible domain-positioning 
function into (u, v). The basic template edit effect is defined as 

P(u, v )  = f ( u ,  v )  + cG(u, v) 

G(u, VI = g(h-'(u, 4 )  

where c is a control vector for the generalized basisfuncrion 

Note that h-'(u, v )  is only defined for (u, v )  E h(J) where J is the 
interval domain of h(s,t). When appropriate, assume that G(u, v )  is 
zero when (u,v) $ h(J). Also note that the control vector c may be 
derived from another control vector c^ that is defined in a local offset 
frame A, similar to the offset-frame displacements for roughening. 

 he result of a template edit, f (u , v ) ,  is approximated using the 
progressive transform. Local estimates are formed using interval- 
analytic techniques. This approximation process is described 
shortly. An example result of template editing is depicted in Fig- 
ure 17. 

The template edit result f ( u , v )  is approximated by using the 
progressive transform to approximate the generalized basis_ func- 
tion G(u,v) = g(h-'(u,v)). This approximation, denoted G(u,v), 
scales a control vector c before added it to f (u , v ) .  The approxi- 
mate template-edit result is f'(u,v) = f ( u , v )  + ce(u ,v) .  Applying 
the progressive decomposition algorithm to approximate G(u, v) re- 
duces to finding local estimates. The remainder of this section will 
discuss the computation of suitable local estimates. 

This discussion will use first-order interval estimates throughout. 
To develop an estimate for g(h-'(u,v)), an estimate will first be 
constructed for h-'(u,v) based on an estimate of h(s,t). This will 
be composed with an estimate of g(s,t) to give the desired estimate 
of g(h-'(u, v ) ) .  

Let h(s,t) have the first-order interval estimate 

i ( s , f )  = H [ i ] + [ 2 ] + S  

where H is an invertible 2 x 2 matrix, and 6 is an interval in (u, v )  
space. Assume that this estimate holds for h-'(Z), where Z is an 
interval in (u, v )  space. ~n interval estimate for h-' (u, v )  is 

i-' (u, v) = H-' [:I+[ : ] + E  

where 

and where the error interval E is chosen so that 

E 3 -H-'S 

This estimate holds for (u,v) E I .  The error E may -: computed as 
the bounding box of the image of the four comers of 6 under the 
transform -H-'. 

Now suppose g(s , t )  has the estimate 



for error interval ‘y, and suppose this holds for (s , t )  E h-’(Z). Then 
I an estimate for g(h-’ (u, v)) over z is 

L- 

For a surface f ( u ,  v), let f ( u ,  v) be the smoothed version of the 
surface for smoothing parameter &. The tangents of this smoothed 
surface are normalized to give 

These normalized tangents are approximated as dyadic splines (us- 
ing the progressive transform) to allow the second stage of smooth- 
ing. Let P(u, v) and Q(u, v) be the approximations to the normalized 
tangents, and p(u,v) and q(u,v) be the smoothed versions of these 
for smoothing parameter &. A final normalization and cross prod- 
uct gives the axis vectors of the desired offset frame 

The result depth will be 

D(u,v) = max{DT(u,V),Ds(u,v)) 

Since the surface position f(u,v) does not generally reside on the 
line through f(u,v) in the normal direction r(u,v), some means 
of blending from the surface to the scrape boundary is needed. A 
scrape boundary occurs when DT(u,v) = Ds(u,v). A simple blend- 
ing method is to linearly move the surface towards the normal line 
as Ds(u,v) -DT(u,v) goes from positive to zero. The blend factor 
is defined as 

= { DS(W)-DT(SV) ifO<D,(u,v)-DT(u,v) < H  
1 i f H  5 Ds(u,v)-DT(u,v) 

where H is a user-supplied blend distance. The blend factor is a p  
plied to define the scrape result as 

0 ifD,(u,v) -D=(u,v) < 0 

P(u,v) = f(u,v)+~(u,v)r(u,v)+ 
q((f(u,v) -&4> -P(u,V))P(u,v)+ 
q((f(u,v) -f(u,v)) . d ~ l V > > d ~ , V )  

Interval estimates are used so that the progressive transform may 
capture the scrape result as a dyadic spline. An example of a single 
scrape is shown in Figure 18. 

where 

The continuous offset-frame template edit becomes 

where (um,Vm) is the domain point of maximum influence for 
G(u,v). The transformA-’(um,v,) is optional, but has the desir- 
able effect that pulling the control vector c in (x,y,z) space causes 
the point f(u,v) to move in the same direction, as would happen 
when pulling the control vectors of conventional basis functions. 

Figure 18: A single “scrape” of a tool shape along a path. 
6 
This section provides the interval-query mechanism for precisely 
sculpting a surface by moving a tool shape along a path in the sur- 
face domain. 

A single surface “scrape” is defined by specifying tool depth in 
an o f f se t -he  normal direction for each (u,v), where depth zero 
occurs at a smoothed version of the surface. The offset frame tan- 
gent and normal directions p(u, v), q(u,v) and r(u,v) are obtained 
from A(u, v) as in the smoothinglroughening operations. The result 
of scraping is defined by the maximum of the tool depth and the 
depth of the original surface with respect to the smooth surface. 

Let f ( u ,  v) be a given surface and f(u, v) be the smoothed surface 
for some smoothing parameter &. Let DT(u,v) be the given tool 
depth function, and define the surface depth as 

Precision Sculpting with Tool and Path 
Superimposing multiple scrapes as a simultaneous operation is 

performed by letting the tool depth function be defined as the max- 
imum of the individual scrape tool depth functions 

DT(u,v) = m+)i(u,v) 

Otherwise the formulation above remains intact. The result of two 
simultaneous scrapes is shown in Figure 19. 

1 

7 Conclusion and Future Work 

The main discovexy, in reviewing this work, is that (a) it is not ob- 
vious how to efficiently perform wavelet compression directly to 
the results of mathematical surface operations, yet (b) it is possible 
to be efficient when an intermediate interval-query oracle supplies 
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Figure 19: ’hvo overlayed surface scrapes. 

local Bbier estimates. We demonstrated by example that formulat- 
ing these operations as oracle responses is tractable for a significant 
number of design modes that might be envisioned. We offer the 
following thoughts on future challenges and potential applications: 

The progressive decomposition algorithm should be applica- 
ble to wavelet representations other than the dyadic splines. 
Only two parts of the topdown algorithm have some sensi- 
tivity to the wavelets chosen: the comparison of the wavelet 
approximation versus the local estimate, and the incremen- 
tal, sparse updates to the wavelet coefficients as more active 
wavelets are added during processing. It seems liely that 
these issues can be solved for many wavelet schemes, includ- 
ing those defined on subdivision surfaces and volumes. 

The choices of which domain intervals to split and which in- 
tervals are “done” should be made with the desired norm in 
mind. This seems to be fairly straightforward, but has not 
been investigated so far. 

0 usefulness for other wavelets 

0 tuning for various norms 

0 optimization of rate-distortion curves 
A major difficulty is trying to approach the optimal rate- 
distortion curves, especially early in the progressive approxi- 
mation process. This is hard because the local estimates only 
give fuzzy knowledge of the target function. Perhaps an adap 
tive, recursive estimation strategy could be devised that would 
improve this knowledge. 

In the discussions in this paper, the applications of the pro- 
gressive decomposition algorithm used ad hoc techniques to 
provide local estimates to target functions. Current investi- 
gations are under way to find general, automatic methods for 
obtaining local estimates for a wide variety of target functions. 

0 general techniques for providing local estimates 
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